The Structures of Nigakilactones E and F

Tatsushi Murae, Tôru Ікеда, Takahiko Tsuyuki, Tadaaki Nishihama and Takeyoshi Таканаshi

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo

(Received December 16, 1969)

The isolation and determination of the structure of bitter principles (nigakilactones A, B, C and D (quassin)) of *Picrasma ailanthoides* Planchon have already been reported.¹⁾ Two additional bitter principles have now been isolated from the same plant. These new bitter principles, nigakilactones E ($C_{24}H_{34}O_8$) and $F(C_{22}H_{32}O_7)$, contain one hydroxyl group more than nigakilactones C and B, respectively.

Nigakilactone F (I, R₁=OH, R₂=H, R₃=OH), mp 265—265.5°C, M⁺ 408, $[\alpha]_{\rm D}$ +46° (c 0.20, in EtOH), $\lambda_{\rm mex}^{\rm MeOH}$ 272 nm (ε 4500), IR (Nujol): 3530, 3470 sh, 3450, 1732, 1684, 1675, 1642, 1634 cm⁻¹, was obtained by the alkaline hydrolysis of nigakilactone E (I, R₁=OAc, R₂=H, R₃=OH), mp 280°C, M⁺ 450, $[\alpha]_{\rm D}$ +36° (c 0.22, in EtOH), $\lambda_{\rm max}^{\rm MeOH}$ 264 nm (ε 4600), IR (Nujol): 3460, 1740, 1725 sh, 1717, 1642, 1255 cm⁻¹, which was not acetylated with acetic anhydride and pyridine.

The NMR spectra (Table 1) of nigakilactones

Table 1. NMR spectral data (δ in ppm, in CDCl₃)

Nigakilactones	E	F	В	С
s-CH ₃	J=7	J=7	J=6.5	J=6
			$_{J=6.5}^{1.13\mathrm{d}}$	$_{J=7}^{1.06\mathrm{d}}$
$t\text{-}\mathrm{C}\mathrm{\underline{H}_3}$	1.25 s	1.22 s	1.21 s	1.27 s
	1.27 s	1.46 s	1.45 s	1.27 s
	1.53 s	1.46 s		
$-O-CO-C\overline{H}_3$	1.98 s			1.95 s
$\underline{\mathrm{H}}\text{-}\mathrm{C-}\mathrm{OCH_3}$	$3.38\mathrm{d}$	$3.03 \mathrm{d}$		
	J=9	J=9		
$-\mathrm{O-C}\underline{\mathrm{H}}_3$	3.55 s	3.58 s	3.60 s	3.42 s
	3.57 s	3.73 s	3.65 s	3.54 s
<u>H</u> -C-OH		J=11;9		
Ç				
C-C <u>H</u> -O-	4.21m	4.13m	4.15m	4.14m
<u>H</u> -C-OAc	$_{J=11;9}^{5.54\mathrm{q}}$			$5.22 \mathrm{q} \ J = 11; 9$
C=C <u>H</u>	$_{J=2.5}^{5.17\mathrm{d}}$	$\overset{5.43\mathrm{d}}{J=2}$	$5.45 \mathrm{d}$ $J{=}2.5$	$5.10 \mathrm{d}$ $J{=}2.5$

¹⁾ T. Murae, T. Tsuyuki, T. Nishihama, S. Masuda and T. Takahashi, *Tetrahedron Lett.*, **1969**, 3013.

E and F are best interpreted on the basis of the skeletal structures of two known nigakilactones C (I, R_1 =OAc, R_2 =H, R_3 =H) and B (I, R_1 =OH, R_2 =H, R_3 =H), respectively. The spectra of nigakilactones C and B show the presence of two secondary and two tertiary methyls. However, those of nigakilactones E and F indicate the presence of one secondary and three tertiary methyls.

On oxidation with Na₂Cr₂O₇ in acetic acid, nigakilactone F yielded a ketone (I, R₁, R₂=O, R₃=OH), mp 256.5—257°C, C₂₂H₃₀O₇, M⁺ 406, $\lambda_{\text{max}}^{\text{MeOH}}$ 264 nm (ε 5700), IR (Nujol): 3550, 3480, 1730, 1696, 1630 cm⁻¹, which was then converted to quassin (II)²⁾ by dehydration with acetic anhydride and sodium acetate.

CH-O

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5

These observations, along with the spectral data (Table 1), show that a hydroxyl group is located on C-13 (not on C-4) and lead to partial structures of III-a and -b for the ring C of nigakilactones E and F, respectively. The coupling costants of H_a - H_b (J=11 Hz) and H_b - H_c (J=9 Hz) indicate that two adjacent protons are in axial-axial relationships. One secondary methyl of nigakilactone E (and F) should be located on C-4. The facile dehydration of the ketone (I, R_1 , R_2 =O, R_3 =OH) to yield II suggests that the hydroxyl group at C-13 is in axial conformation.

Thus, the structures of nigakilactones E and F are shown to be I (R_1 =OAc, R_2 =H, R_3 =OH) and I(R_1 =OH, R_2 =H, R_3 =OH), respectively.

²⁾ Z. Valenta, A. H. Gray, D. E. Orr, S. Papadopoulos and C. Podešva, *Tetrahedron*, **18**, 1433 (1962).